Sensors & Transducers (Jul 2013)

Morphology Control of Tin Oxide Nanostructures and Sensing Performances for Acetylene Detection

  • Weigen CHEN,
  • Qu ZHOU,
  • Xiaoping SU,
  • Lingna XU,
  • Shudi PENG

Journal volume & issue
Vol. 154, no. 7
pp. 195 – 200

Abstract

Read online

Morphology Control plays an important role in gas sensing properties of metal oxide semiconductor based gas sensors. In this study, various morphologies of SnO2 nanostructures including nanobulks, nanospheres, nanorods, and nanowires were successfully synthesized via a simple hydrothermal method assisted with different surfactants. X-ray powder diffraction and scanning electron microscopy were employed to characterize the prepared products. Gas sensors were fabricated by screen-printing the as-prepared SnO2 nanostructures onto planar ceramic substrates. Moreover, their gas sensing properties were systematically investigated towards acetylene gas (C2H2), an important fault hydrocarbon dissolved in power transformer oil. Experiments indicate that the SnO2 nanowires based sensor exhibits excellent gas sensing properties, such as lower operating temperature, higher gas response, quicker response-recovery time and good stability than those of SnO2 nanobulks, nanospheres and nanorods. These results imply SnO2 nanowires a promising sensing morphology for C2H2 detection and provide us a feasible way to develop high-performance gas sensor by tailoring the microstructures and morphologies of the materials in further.

Keywords