Electronic Research Archive (Aug 2023)
On p-Laplacian Kirchhoff-Schrödinger-Poisson type systems with critical growth on the Heisenberg group
Abstract
In this article, we investigate the Kirchhoff-Schrödinger-Poisson type systems on the Heisenberg group of the following form: $ \begin{equation*} \left\{ \begin{array}{lll} {-(a+b\int_{\Omega}|\nabla_{H} u|^{p}d\xi)\Delta_{H, p}u-\mu\phi |u|^{p-2}u} = \lambda |u|^{q-2}u+|u|^{Q^{\ast}-2}u &\mbox{in}\ \Omega, \\ -\Delta_{H}\phi = |u|^{p} &\mbox{in}\ \Omega, \\ u = \phi = 0 &\mbox{on}\ \partial\Omega, \end{array} \right. \end{equation*} $ where $ a, b $ are positive real numbers, $ \Omega\subset \mathbb{H}^N $ is a bounded region with smooth boundary, $ 1 < p < Q $, $ Q = 2N + 2 $ is the homogeneous dimension of the Heisenberg group $ \mathbb{H}^N $, $ Q^{\ast} = \frac{pQ}{Q-p} $, $ q\in(2p, Q^{\ast}) $ and $ \Delta_{H, p}u = \mbox{div}(|\nabla_{H} u|^{p-2}\nabla_{H} u) $ is the $ p $-horizontal Laplacian. Under some appropriate conditions for the parameters $ \mu $ and $ \lambda $, we establish existence and multiplicity results for the system above. To some extent, we generalize the results of An and Liu (Israel J. Math., 2020) and Liu et al. (Adv. Nonlinear Anal., 2022).
Keywords