Journal of Integrative Agriculture (Feb 2014)

Major Gene Identification and Quantitative Trait Locus Mapping for Yield-Related Traits in Upland Cotton (Gossypium hirsutum L.)

  • Zhe XIA,
  • Xin ZHANG,
  • Yang-yang LIU,
  • Zi-fang JIA,
  • Hai-hong ZHAO,
  • Cheng-qi LI,
  • Qing-lian WANG

Journal volume & issue
Vol. 13, no. 2
pp. 299 – 309

Abstract

Read online

Segregation analysis of the mixed genetic model of major gene plus polygene was used to identify the major genes for cotton yield-related traits using six generations P1, P2, F1, B1, B2, and F2 generated from the cross of Baimian 1 × TM-1. In addition to boll size and seed index, the major genes for the other five traits were detected: one each for seed yield, lint percentage, boll number, lint index; and two for lint yield. Quantitative trait locus/loci (QTL) mapping was performed in the F2 and F2:3 populations of above cross through molecular marker technology, and a total of 50 QTL (26 suggestive and 24 significant) for yield-related traits were detected. Four common QTL were discovered: qLP-3b(F2)/qLP-3(F2:3) and qLP-19b (F2)/qLP-19(F2:3) for lint percentage, qBN-17(F2)/qBN-17(F2:3) for boll number, and qBS-26b(F2)/qBS-26(F2:3) for boll size. Especially, qLP-3b(F2)/qLP-3(F2:3), not only had LOD scores <3 but also exceeded the permutation threshold (5.13 and 5.29, respectively), correspondingly explaining 23.47 and 29.55% of phenotypic variation. This QTL should be considered preferentially in marker assisted selection (MAS). Segregation analysis and QTL mapping could mutually complement and verify, which provides a theoretical basis for genetic improvement of cotton yield-related traits by using major genes (QTL).

Keywords