BMC Cancer (Oct 2024)

FTO/m6A mediates miR-138-5p maturation and regulates gefitinib resistance of lung adenocarcinoma cells by miR-138-5p/LCN2 axis

  • Dongxiao Ding,
  • Wenjun Shang,
  • Ke Shi,
  • Junjie Ying,
  • Li Wang,
  • Zhongjie Chen,
  • Chong Zhang

DOI
https://doi.org/10.1186/s12885-024-13036-5
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Lung cancer (LC) occupies an important position in the lethality of cancer patients. Acquired resistance to gefitinib in lung adenocarcinoma (LUAD) seriously affects the therapeutic efficacy of LC. Thus, it is of major scientific and clinical significance to probe the mechanism of gefitinib resistance in LUAD for ameliorating the prognosis of patients. Methods The expression of miRNAs in gefitinib-resistant LUAD cells was validated using qRT-PCR. Cell viability was assessed through CCK-8, whereas cell death was examined through PI staining. Changes in the ferroptosis process were evaluated by detecting the intracellular Glutathione (GSH), Malondialdehyde (MDA), and Reactive Oxygen Species (ROS) levels. Downstream targets of miR-138-5p were verified via luciferase reporter and RNA pull-down assays. RIP and qRT-PCR were employed to evaluate pri-miR-138-5p binding to DiGeorge critical region 8 (DGCR8) and the pri-miR-138-5p m6A modification level. Additionally, the impact of fat mass and obesity-associated protein (FTO) on LUAD gefitinib sensitivity was assessed in vivo by constructing a xenograft model. Results We observed that miR-138-5p was notably diminished in gefitinib-resistant cells. Overexpression of miR-138-5p suppressed viability while facilitated cell death and intracellular ferroptosis in gefitinib-resistant cells. Moreover, lipocalin 2 (LCN2) was the downstream target of miR-138-5p. The biological functions of miR-138-5p on gefitinib-resistant cells was reversed by introduction of LCN2. FTO suppressed the binding of DGCR8 to pri-miR-138-5p through m6A modification, thereby restraining the processing of miR-138-5p. Meanwhile, silencing of FTO enhanced the sensitivity of LUAD to gefitinib treatment. Conclusion FTO suppressed the processing of miR-138-5p and then modulated the proliferation, death, and ferroptosis of gefitinib-resistant cells through the miR-138-5p/LCN2 pathway, which may put forward novel insights for clinically ameliorating the therapeutic effect of gefitinib in LUAD.

Keywords