Heliyon (Apr 2023)
Genetic enhancement of climate-resilient traits in small millets: A review
Abstract
Agriculture is facing the challenge of feeding the ever-growing population that is projected to reach ten billion by 2050. While improving crop yield and productivity can address this challenge, the increasing effects of global warming and climate change seriously threaten agricultural productivity. Thus, genomics and genome modification technologies are crucial to improving climate-resilient traits to enable sustained yield and productivity; however, significant research focuses on staple crops such as rice, wheat, and maize. Crops that are naturally climate-resilient and nutritionally superior to staple cereals, such as small millets, remain neglected and underutilized by mainstream research. The ability of small millets to grow in marginal regions having limited irrigation and poor soil fertility makes these crops a better choice for cultivation in arid and semi-arid areas. Hence, mainstreaming small millets for cultivation and using omics technologies to dissect the climate-resilient traits to identify the molecular determinants underlying these traits are imperative for addressing food and nutritional security. In this context, the review discusses the genomics and genome modification approaches for dissecting key traits in small millets and their application for improving these traits in cultivated germplasm. The review also discusses biofortification for nutritional security and machine-learning approaches for trait improvement in small millets. Altogether, the review provides a roadmap for the effective use of next-generation approaches for trait improvement in small millets. This will lead to the development of improved varieties for addressing multiple insecurities prevailing in the present climate change scenario.