Ribogospodarsʹka Nauka Ukraïni (Sep 2015)
BIOLOGICAL ACTIVITY OF SKIN SECRETIONS IN THE PERCIDAE FAMILY OF FISH WITH REGARD TO ERYSIPELOTHRIX RHUSIOPATHIAE BACTERIA
Abstract
Purpose. To determine the effect of skin secretions in Percidae family of fish (Sander lucioperca, Perca fluviatilis) on the cultures of pathogenic E. rhusiopathiae bacteria. Methodology. Filter paper was placed on the skin of live fish; after 1 minute it was removed, and the extraction of water-soluble components in the rate of 0.1 cm3 of water per 1 cm2 area of the paper was carried out. The resulting solutions of the secretions of fish skin glands were sterilized by vacuum filtration through the filters with a pore diameter The test samples contained E. rhusiopathiae cultures and fish skin secretions in 1:10, 1:100, 1:1000 and 1:10000 dilutions. The control samples contained a similar ratio of sterile water and cultures of the experimental bacteria type. The content of E. rhusiopathiae cells in the experimental and control samples was determined after 48 hours, the samples were stored at a temperature of +18... +20 °C. Findings. The presence of water-soluble extracts of skin secretions obtained from Percidae family of freshwater fish in the environment causes an increase in the density of E. rhusiopathiae bacteria cultures. The degree of the detected stimulating effect of E. rhusiopathiae directly depend on the concentration of the secretions of fish skin glands in the experimental samples. Under the conditions of freshwater ecosystems, such fish as S. lucioperca and P. fluviatilis and E. rhusiopathiae bacteria may form biocenotical relations of the trophic, topical and phoric types. Originality. The quantitative data proving the biological activity of skin secretions in Percidae family of fish with regard to E. rhusiopathiae pathogenic bacteria have been obtained for the first time. Practical Value. One of the factors contributing to E. rhusiopathiae bacteria staying in freshwater conditions for a long time can be their biocenotical relations with the components of freshwater biocenoses, including such fish as S. lucioperca and P. fluviatilis. When carrying out measures aimed at preventing and eliminating the outbreaks of infections caused by E. rhusiopathiae, it is necessary to consider the possibility of the persistence of these pathogenic bacteria on the skin of freshwater fish.
Keywords