Pharmaceuticals (Dec 2023)

In Silico, In Vitro, and In Vivo Evaluation of Caffeine-Coated Nanoparticles as a Promising Therapeutic Avenue for AML through NF-Kappa B and TRAIL Pathways Modulation

  • Muhammad Hamid Siddique,
  • Sidra Bukhari,
  • Inam Ullah Khan,
  • Asiya Essa,
  • Zain Ali,
  • Usama Sabir,
  • Omiya Ayoub,
  • Haleema Saadia,
  • Muhammad Yaseen,
  • Aneesa Sultan,
  • Iram Murtaza,
  • Philip G. Kerr,
  • Mashooq Ahmad Bhat,
  • Mariam Anees

DOI
https://doi.org/10.3390/ph16121742
Journal volume & issue
Vol. 16, no. 12
p. 1742

Abstract

Read online

Background: Advancements in nanoscience have led to a profound paradigm shift in the therapeutic applications of medicinally important natural drugs. The goal of this research is to develop a nano-natural product for efficient cancer treatment. Methods and Results: For this purpose, mesoporous silica nanoparticles (MSNPs) were formulated, characterized, and loaded with caffeine to develop a targeted drug delivery system, i.e., caffeine-coated nanoparticles (CcNPs). In silico docking studies were conducted to examine the binding efficiency of the CcNPs with different apoptotic targets followed by in vitro and in vivo bioassays in respective animal models. Caffeine, administered both as a free drug and in nanomedicine form, along with doxorubicin, was delivered intravenously to a benzene-induced AML model. The anti-leukemic potential was assessed through hematological profiling, enzymatic biomarker analysis, and RT-PCR examination of genetic alterations in leukemia markers. Docking studies show strong inter-molecular interactions between CcNPs and apoptotic markers. In vitro analysis exhibits statistically significant antioxidant activity, whereas in vivo analysis exhibits normalization of the genetic expression of leukemia biomarkers STMN1 and S1009A, accompanied by the restoration of the hematological and morphological traits of leukemic blood cells in nanomedicine-treated rats. Likewise, a substantial improvement in hepatic and renal biomarkers is also observed. In addition to these findings, the nanomedicine successfully normalizes the elevated expression of GAPDH and mTOR induced by exposure to benzene. Further, the nanomedicine downregulates pro-survival components of the NF-kappa B pathway and upregulated P53 expression. Additionally, in the TRAIL pathway, it enhances the expression of pro-apoptotic players TRAIL and DR5 and downregulates the anti-apoptotic protein cFLIP. Conclusions: Our data suggest that MSNPs loaded with caffeine, i.e., CcNP/nanomedicine, can potentially inhibit transformed cell proliferation and induce pro-apoptotic TRAIL machinery to counter benzene-induced leukemia. These results render our nanomedicine as a potentially excellent therapeutic agent against AML.

Keywords