Polymers (Dec 2022)

Adsorption of Wormlike Chains onto Partially Permeable Membranes

  • Alexander Semenov,
  • Irina Nyrkova

DOI
https://doi.org/10.3390/polym15010035
Journal volume & issue
Vol. 15, no. 1
p. 35

Abstract

Read online

Reversible adsorption of a single stiff wormlike macromolecule to flat membranes with various permeabilities is considered theoretically. It is shown that the adsorbed layer microstructure is significantly different from either a flexible chain or a stiff chain adsorption at a solid surface. Close to the critical point, the adsorbing wormlike chain forms a strongly anisotropic proximal layer near the membrane in addition to a nearly isotropic distal layer. The proximal layer is characterized by the algebraic monomer concentration profile, c(x)∝x−β, due to the self-similar distribution of aligned polymer loops. For a perfectly penetrable membrane, β=1 which is different from β=4/3 obtained for semiflexible chain adsorption at a solid surface. Moreover, we establish that the critical exponent for a partially permeable membrane depends on its properties (porosity w) and propose an asymptotically exact theory (based on the generalized Edwards equation) predicting this dependence, β=β(w). We also develop a scaling theory elucidating, in particular, an intricate competition of loops and tails in both proximal and distal sublayers.

Keywords