PLoS ONE (Jan 2015)

Direction of Biological Motion Affects Early Brain Activation: A Link with Social Cognition.

  • Alan John Pegna,
  • Elise Gehring,
  • Georg Meyer,
  • Marzia Del Zotto

DOI
https://doi.org/10.1371/journal.pone.0131551
Journal volume & issue
Vol. 10, no. 6
p. e0131551

Abstract

Read online

A number of EEG studies have investigated the time course of brain activation for biological movement over this last decade, however the temporal dynamics of processing are still debated. Moreover, the role of direction of movement has not received much attention even though it is an essential component allowing us to determine the intentions of the moving agent, and thus permitting the anticipation of potential social interactions. In this study, we examined event-related responses (ERPs) in 15 healthy human participants to light point walkers and their scrambled counterparts, whose movements occurred either in the radial or in the lateral plane. Compared to scrambled motion (SM), biological motion (BM) showed an enhanced negativity between 210 and 360ms. A source localization algorithm (sLORETA) revealed that this was due to an increase in superior and middle temporal lobe activity. Regarding direction, we found that radial BM produced an enhanced P1 compared to lateral BM, lateral SM and radial SM. This heightened P1 was due to an increase in activity in extrastriate regions, as well as in superior temporal, medial parietal and medial prefrontal areas. This network is known to be involved in decoding the underlying intentionality of the movement and in the attribution of mental states. The social meaning signaled by the direction of biological motion therefore appears to trigger an early response in brain activity.