AgriEngineering (Sep 2024)

Comparative Performance of a Sprayer Rate Controller and Pulse Width Modulation (PWM) Systems for Site-Specific Pesticide Applications

  • Ravi Meena,
  • Simerjeet Virk,
  • Glen Rains,
  • Wesley Porter

DOI
https://doi.org/10.3390/agriengineering6030189
Journal volume & issue
Vol. 6, no. 3
pp. 3312 – 3326

Abstract

Read online

With recent advances in spray technology and rising interest in site-specific applications, it is imperative to assess the performance of the latest application technologies to ensure effective pesticide applications. Thus, a study was conducted to compare and evaluate the performance of two different flow control systems [rate controller (RC) and pulse width modulation (PWM)] on an agricultural sprayer while simulating different site-specific application scenarios. A custom data acquisition and logging system was developed to record the real-time nozzle flow and pressure across the sprayer boom. The first experiment measured the response time to achieve different target application rates in single-rate site-specific (On/Off) states at varying simulated ground speeds. The second experiment examined the response time for rate transitions in variable-rate application scenarios among different selected target rates at varying simulated ground speeds. Across all the application scenarios, the PWM system consistently outperformed the RC system in terms of response time and rate stabilization. Specifically, the PWM system exhibited significantly lower mean rate stabilization times compared to the RC system during single-rate application states. Similarly, in the variable-rate application states—where the rate transitions were evaluated—the PWM system consistently displayed shorter mean rate transition and stabilization times compared to the RC system. Overall, the findings from this study suggest PWM systems tend to be more responsive and effective, making them the preferred choice for efficient precision site-specific pesticide applications. Future research should evaluate the influence of other operational parameters such as look-ahead time and ground speed variations on the performance of both systems in actual field applications.

Keywords