The Plant Genome (Sep 2023)
A chromosome‐scale reference of Chenopodium watsonii helps elucidate relationships within the North American A‐genome Chenopodium species and with quinoa
Abstract
Abstract Quinoa (Chenopodium quinoa), an Andean pseudocereal, attained global popularity beginning in the early 2000s due to its protein quality, glycemic index, and high fiber, vitamin, and mineral contents. Pitseed goosefoot (Chenopodium berlandieri), quinoa's North American free‐living sister species, grows on disturbed and sandy substrates across the North America, including saline coastal sands, southwestern deserts, subtropical highlands, the Great Plains, and boreal forests. Together with South American avian goosefoot (Chenopodium hircinum) they comprise the American tetraploid goosefoot complex (ATGC). Superimposed on pitseed goosefoot's North American range are approximately 35 AA diploids, most of which are adapted to a diversity of niche environments. We chose to assemble a reference genome for Sonoran A‐genome Chenopodium watsonii due to fruit morphological and high (>99.3%) preliminary sequence‐match similarities with quinoa, along with its well‐established taxonomic status. The genome was assembled into 1377 scaffolds spanning 547.76 Mb (N50 = 55.14 Mb, L50 = 5), with 94% comprised in nine chromosome‐scale scaffolds and 93.9% Benchmarking Universal Single‐Copy Orthologs genes identified as single copy and 3.4% as duplicated. A high degree of synteny, with minor and mostly telomeric rearrangements, was found when comparing this taxon with the previously reported genome of South American C. pallidicaule and the A‐subgenome chromosomes of C. quinoa. Phylogenetic analysis was performed using 10,588 single‐nucleotide polymorphisms generated by resequencing a panel of 41 New World AA diploid accessions and the Eurasian H‐genome diploid Chenopodium vulvaria, along with three AABB tetraploids previously sequenced. Phylogenetic analysis of these 32 taxa positioned the psammophyte Chenopodium subglabrum on the branch containing A‐genome sequences from the ATGC. We also present evidence for long‐range dispersal of Chenopodium diploids between North and South America.