IEEE Photonics Journal (Jan 2021)

Compact, Hybrid III-V/Silicon Vernier Laser Diode Operating From 1955–1992 nm

  • Jia Xu Brian Sia,
  • Xiang Li,
  • Wanjun Wang,
  • Zhongliang Qiao,
  • X. Guo,
  • Jiawei Wang,
  • Callum G. Littlejohns,
  • Chongyang Liu,
  • Graham T. Reed,
  • Kian Siong Ang,
  • Hong Wang

DOI
https://doi.org/10.1109/JPHOT.2021.3119760
Journal volume & issue
Vol. 13, no. 6
pp. 1 – 5

Abstract

Read online

The 2 µm waveband is capable of enabling pervasive applications. The demonstration of the hollow-core photonic bandgap fiber and the thulium-doped fiber amplifier has highlighted the fiber propagation and amplification aspects of fiber communications, indicating its potential as an adjunct to present communication infrastructure at the O/C bands. The above is especially imperative given the current concerns with regards to the upper bandwidth limit of the single-mode fiber. Furthermore, the waveband could facilitate many more applications such as LIDAR and free-space communication. However, water absorption (OH-) is high at most of the 2 μm waveband and this will impact the optical insertion loss of applications implemented in the wavelength region. The relative low water absorption region of the waveband falls within 1950 – 2000 nm. As such, the development of a hybrid/heterogeneous III-V/silicon laser source that operates within the region is important for 2 µm silicon photonics. In this work, we demonstrate a III-V/Si hybrid tunable laser operating from 1955 - 1992 nm for the first time. Room temperature continuous wave operation is achieved with a maximum laser output power of 8.1 mW. This wavelength-tunable laser operates specifically within the low water absorption window, indicating good wavelength suitability for applications at the 2 μm waveband.

Keywords