Scientific Reports (Feb 2023)

A deep learning model for detection of leukocytes under various interference factors

  • Meiyu Li,
  • Cong Lin,
  • Peng Ge,
  • Lei Li,
  • Shuang Song,
  • Hanshan Zhang,
  • Lu Lu,
  • Xiaoxiang Liu,
  • Fang Zheng,
  • Shijie Zhang,
  • Xuguo Sun

DOI
https://doi.org/10.1038/s41598-023-29331-3
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 12

Abstract

Read online

Abstract The accurate detection of leukocytes is the basis for the diagnosis of blood system diseases. However, diagnosing leukocyte disorders by doctors is time-consuming and requires extensive experience. Automated detection methods with high accuracy can improve detection efficiency and provide recommendations to inexperienced doctors. Current methods and instruments either fail to automate the identification process fully or have low performance and need suitable leukocyte data sets for further study. To improve the current status, we need to develop more intelligent strategies. This paper investigates fulfilling high-performance automatic detection for leukocytes using a deep learning-based method. We established a new dataset more suitable for leukocyte detection, containing 6273 images (8595 leukocytes) and considering nine common clinical interference factors. Based on the dataset, the performance evaluation of six mainstream detection models is carried out, and a more robust ensemble model is proposed. The mean of average precision (mAP) @IoU = 0.50:0.95 and mean of average recall (mAR)@IoU = 0.50:0.95 of the ensemble model on the test set are 0.853 and 0.922, respectively. The detection performance of poor-quality images is robust. For the first time, it is found that the ensemble model yields an accuracy of 98.84% for detecting incomplete leukocytes. In addition, we also compared the test results of different models and found multiple identical false detections of the models, then provided correct suggestions for the clinic.