AIP Advances (Feb 2016)
In situ measurement of the particle size distribution of the fragmentation product of laser-shock-melted aluminum using in-line picosecond holography
Abstract
The dynamic fragmentation of shock-melted metal is a topic of increasing interest in shock physics. However, high-quality experimental studies of the phenomenon are limited, and data that are essential for developing predictive models of the phenomenon, such as the mass and particle sizes distributions, are quite sparse. In-line holography is an effective non-contact technique for measuring particle size distribution, but critical technical requirements, in particular, particle density limits, complicate its application to the subject phenomenon. These challenges have been reasonably overcome in the present study, allowing for successful in situ measurements of the size distribution of the fragmentation product from laser-shock-melted aluminum. In this letter, we report on our experiments and present the measured data.