Diagnostics (Oct 2024)

Quantification of Replacement Fibrosis in Aortic Stenosis: A Narrative Review on the Utility of Cardiovascular Magnetic Resonance Imaging

  • Megan R. Rajah,
  • Anton F. Doubell,
  • Philip G. Herbst

DOI
https://doi.org/10.3390/diagnostics14212435
Journal volume & issue
Vol. 14, no. 21
p. 2435

Abstract

Read online

Aortic stenosis (AS) is associated with the development of replacement myocardial fibrosis/scar. Given the dose-dependent relationship between scar and clinical outcomes after aortic valve replacement (AVR) surgery, scar quantity may serve as an important risk-stratification tool to aid decision-making on the optimal timing of AVR. Scar is non-invasively assessed and quantified by cardiovascular magnetic resonance (CMR) imaging. Several quantification techniques exist, and consensus on the optimal technique is lacking. These techniques range from a visual manual method to fully automated ones. This review describes the different scar quantification techniques used and highlights their strengths and shortfalls within the context of AS. The two most commonly used techniques in AS include the semi-automated signal threshold versus reference mean (STRM) and full-width half-maximum (FWHM) techniques. The accuracy and reproducibility of these techniques may be hindered in AS by the coexistence of diffuse interstitial fibrosis and the presence of relatively small, non-bright scars. The validation of these techniques against histology, which is the current gold standard for scar quantification in AS, is limited. Based on the best current evidence, the STRM method using a threshold of three standard deviations above the mean signal intensity of remote myocardium is recommended. The high reproducibility of the FWHM technique in non-AS cohorts has been shown and merits further evaluation within the context of AS. Future directions include the use of quantitative T1 mapping for the detection and quantification of scar, as well as the development of serum biomarkers that reflect the fibrotic status of the myocardium in AS.

Keywords