Spanish Journal of Marketing-ESIC (Jul 2024)
Big data in tourism marketing: past research and future opportunities
Abstract
Purpose – The purpose of this study was to uncover representative emergent areas and to examine the research area of marketing, tourism and big data (BD) to assess how these thematic areas have developed over a 27-year time period from 1996 to 2022. This study analyzed 1,152 studies to identify the principal thematic areas and emergent topics, principal theories used, predominant forms of analysis and the most productive authors in terms of research. Design/methodology/approach – The articles for this research were all selected from the Web of Science database. A systematic and quantitative literature review was performed. This study used SciMAT software to extract indicators. Specifically, this study analyzed productivity and produced a science map. Findings – The findings suggest that interest in this area has increased gradually. The outputs also reveal the innovative effort of industry in new technologies for developing models for tourism marketing. Ten research areas were identified: “destination marketing,” “mobility patterns,” “co-creation,” “gastronomy,” “sustainability,” “tourist behavior,” “market segmentation,” “artificial neural networks,” “pricing” and “tourist satisfaction.” Originality/value – This work is unique in proposing an agenda for future research into tourism marketing research with new technologies such as BD and artificial intelligence techniques. In addition, the results presented here fill the current gap in the research since while there have been literature reviews covering tourism with BD or marketing, these areas have not been studied as a whole. Propósito – El objetivo de esta investigación fue descubrir nichos representativos de áreas emergentes y examinar el área de Marketing, Turismo y Big Data, evaluando cómo han evolucionado estas áreas temáticas durante un período de 27 años desde 1996–2022. Analizamos 1.152 investigaciones para identificar las principales áreas temáticas y temas emergentes, las principales teorías utilizadas, las formas de análisis predominantes y los autores más productivos en términos de investigación. Metodología – Todos los artículos para esta investigación fueron seleccionados de la base de datos Web of Science. Realizamos una revisión sistemática y cuantitativa de la literatura. Utilizamos el software SciMAT para extraer indicadores. Específicamente, analizamos la productividad y elaboramos un mapeo científico. Hallazgos – Los hallazgos sugieren que el interés en esta área ha aumentado gradualmente. Los resultados también revelan el esfuerzo innovador de la industria en nuevas tecnologías para desarrollar modelos de marketing turístico. Se identificaron diez áreas de investigación (“marketing de destinos”, “patrones de movilidad”, “co-creación”, “gastronomía”, “sostenibilidad”, “comportamiento turístico”, “segmentación de mercado”, “redes neuronales artificiales”, “precios”, y “satisfacción del turista”). Valor – Este trabajo es único al proponer una agenda para futuras investigaciones en investigación de Marketing Turístico con nuevas tecnologías como Big Data y técnicas de Inteligencia Artificial. Además, los resultados presentados aquí llenan el vacío actual en la investigación ya que si bien se han realizado revisiones de literatura que cubren Turismo con Big Data o Marketing, estas áreas no se han estudiado como un conjunto. 目的 – 这一特定研究领域的目标是发现具有代表性的新兴领域, 并考察市场营销、旅游和大数据研究领域, 以评估这些主题领域在1996年至2022年的27年间是如何发展的。我们分析了1152项研究, 以确定主要专题领域和新兴主题、使用的主要理论、主要的分析形式以及在研究方面最有成效的作者。 方法 – 本研究的文章都是从Web of Science数据库中选出的。我们进行了系统化的定量文献审查, 并使用SciMAT软件来提取指标。具体来说, 我们分析了生产力并制作了一个科学研究地图。 研究结果 – 研究结果表明, 人们对这一领域的兴趣已经逐渐增加。本文也揭示了工业界在开发旅游营销模式的新技术方面的创新努力。研究确定了十个研究领域:“目的地营销”、“流动模式”、“共同创造”、“美食”、“可持续性”、“游客行为”、“市场细分”、“人工神经网络”、“定价 “和游客满意度”。 原创性 – 这项研究的独特之处在于提出了未来利用大数据和人工智能技术等新技术进行旅游营销研究的议程。此外, 本文的结果填补了目前的研究空白, 因为虽然有文献综述涉及旅游与大数据或市场营销, 但这些领域还没有被作为一个整体来研究。
Keywords