Jurnal Teknologi Informasi dan Ilmu Komputer (Aug 2024)

Penerapan Metode K-Means Clustering dan Simple Moving Average untuk Memprediksi Jenis Penyakit di Provinsi Jawa Timur

  • Shynta Ayu Dwi Darmawan,
  • Karmilasari

DOI
https://doi.org/10.25126/jtiik.1148703
Journal volume & issue
Vol. 11, no. 4

Abstract

Read online

Berdasarkan buku Profil Kesehatan Provinsi Jawa Timur dari tahun 2017 hingga 2021, terlihat bahwa banyak penyakit menjadi perhatian di 38 kota atau kabupaten di Jawa Timur. Dari data tersebut, belum jelas daerah mana yang perlu mendapatkan prioritas penanganan. Terdapat kesulitan pengidentifikasian daerah prioritas dalam penanganan penyakit. Tujuan penelitian adalah mengelompokkan kasus ke dalam kelompok yang relevan dan dapat diidentifikasi, memprediksi tren kasus penyakit berdasarkan data historis di setiap daerah dari tahun ke tahun, membangun sistem berbasis website sebagai media implementasi prediksi dan clustering. Tahapan penelitian meliputi studi literatur, pengembangan model clustering menggunakan K-Means dan prediksi menggunakan Simple Moving Average, pengembangan sistem menggunakan MySQL, PHP dan Angular. Metode K-Means Clustering membagi data ke dalam beberapa kelompok berdasarkan karakteristik yang mirip, sehingga lebih mudah untuk mengidentifikasi pola dan tren yang tersembunyi dalam data kesehatan. Simple Moving Average menggunakan rata-rata data masa lalu untuk memperhalus perubahan jangka pendek dan menemukan pola jangka panjang. Hasil penelitian menunjukkan berhasilnya implementasi clustering dalam 3 cluster: rendah, sedang dan tinggi. Prediksi tren kasus penyakit berhasil diterapkan menggunakan data historis periode 5 tahun, memberikan wawasan signifikan untuk perencanaan kesehatan. Uji fungsional dan kompatibilitas browser menunjukkan bahwa sistem berjalan sesuai harapan di berbagai lingkungan. Pengujian usability dengan metode WebQual 4.0 menunjukkan nilai rata-rata 4,34 (sangat baik), mengonfirmasi keberhasilan sistem dalam memenuhi kebutuhan pengguna. Hasil penelitian ini memiliki implikasi praktis untuk meningkatkan efektivitas pengelolaan penanggulangan penyakit di Provinsi Jawa Timur dengan mengidentifikasi prioritas daerah secara lebih akurat dan membuat keputusan yang lebih baik berdasarkan data. Abstract Based on the East Java Provincial Health Profile book from 2017 to 2021, it appears that many diseases are a concern in 38 cities or districts in East Java. From this data, it is not clear which areas need priority handling. There are difficulties in identifying priority areas in disease management. The research objectives are to cluster cases into relevant and identifiable groups, predict trends in disease cases based on historical data in each region from year to year, build a website-based system as a medium for implementing predictions and clustering. The research stages include literature study, clustering model development using K-Means and prediction using Simple Moving Average, system development using MySQL, PHP and Angular. The K-Means Clustering method divides data into groups based on similar characteristics, making it easier to identify patterns and trends hidden in health data. Simple Moving Average uses the average of past data to smooth out short-term changes and find long-term patterns. The results showed the successful implementation of clustering in 3 clusters: low, medium and high. Disease case trend prediction was successfully implemented using historical data over a 5-year period, providing significant insights for health planning. Functional and browser compatibility tests showed that the system runs as expected in various environments. Usability testing with the WebQual 4.0 method showed an average score of 4.34 (excellent), confirming the success of the system in meeting user needs. The results of this study have practical implications for improving the effectiveness of disease management in East Java Province by more accurately identifying regional priorities and making better decisions based on data.

Keywords