Physical Review Physics Education Research (Oct 2024)

Student attitudes toward quantum information science and technology in a high school outreach program

  • Michele Darienzo,
  • Angela M. Kelly,
  • Dominik Schneble,
  • Tzu-Chieh Wei

DOI
https://doi.org/10.1103/PhysRevPhysEducRes.20.020126
Journal volume & issue
Vol. 20, no. 2
p. 020126

Abstract

Read online Read online

[This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] With the current growth in quantum information science and technology (QIST), there is an increasing need to prepare precollege students for postsecondary QIST study and careers. This mixed methods, explanatory sequential research focused on students’ affective outcomes from a one-week, 25-h summer program for U.S. high school students in grades 10–12. The workshop structure was based upon psychosocial theories of self-determination and planned behavior, where QIST aspirations may be facilitated and viewed as achievable choices if students acquire disciplinary knowledge, self-efficacy, normative expectancy of their capacity in the field, and awareness of vocational roles. The program featured lectures, demonstrations, and hands-on experiences in classical and quantum physics and quantum computing. Students’ attitudes toward QIST (N=77)—including self-efficacy, self-concept, relevance, career aspirations, and perceptions of quantitative fluency—showed improvement with a medium effect size, even though treatment students entered the program with more positive QIST attitudes when compared with a control group of high school physics students (N=65). Postprogram interviews with n=12 participants identified several explanatory themes: (i) Students tended to comprehend classical and quantum topics taught through multiple representations, regardless of whether they had taken physics previously; (ii) students experienced some challenges with mathematics and science concepts that support quantum understanding, yet they revealed a willingness to learn new concepts outside of their comfort zone; (iii) students expressed motivation for pursuing science, technology, engineering, and mathematics and/or quantum-related careers in the future, as well as increased QIST self-concept, largely through understanding the relevance of QIST in solving technological problems; and (iv) students reported increased self-efficacy in understanding QIST topics and performing related tasks. This informal summer program showed promise in promoting positive student attitudes toward QIST, a critical emerging field in advancing technological solutions for global challenges.