HortTechnology (Mar 2021)

Evaluating the Effects of Acetic Acid and d-Limonene on Four Aquatic Plants

  • Lyn A. Gettys,
  • Kyle L. Thayer

DOI
https://doi.org/10.21273/HORTTECH04769-20
Journal volume & issue
Vol. 31, no. 2
pp. 225 – 233

Abstract

Read online

The foundation of most aquatic weed management programs in Florida is synthetic herbicides because many of these U.S. Environmental Protection Agency (USEPA)-registered products are effective, selective, and inexpensive compared with other strategies such as mechanical harvesting. However, stakeholders have expressed concern regarding their use and managers are interested in exploring alternative methods for aquatic weed control. To that end, we evaluated the efficacy, selectivity, and costs of the “natural” products acetic acid and d-limonene (alone and in combination with each other and citric acid) on the invasive floating plants waterhyacinth (Eichhornia crassipes) and waterlettuce (Pistia stratiotes), and the native emergent plants broadleaf sagittaria (Sagittaria latifolia) and pickerelweed (Pontederia cordata). These products, plus an industry-standard synthetic herbicide (diquat dibromide), were applied once as foliar treatments to healthy plants, which were grown out for 8 weeks after treatment to allow development of phytotoxicity symptoms. A 0.22% concentration of diquat dibromide eliminated all vegetation, but neither “natural” product alone provided acceptable (>80%) control of floating weeds, even when applied at the maximum concentrations under evaluation (20% acetic acid, 30% d-limonene). Citric acid (5% or 10%) had no effect on the activity of acetic acid or d-limonene, but some combinations of acetic acid and d-limonene controlled floating weeds effectively without causing unacceptable damage to native plants. However, these treatments are much more expensive than the synthetic standard and managers would realize a 22- to 26-fold increase in product cost alone without factoring in other expenses such as additional labor and application time. Combinations of acetic acid and d-limonene may have utility in some areas where the use of synthetic herbicides is discouraged, but broad-scale deployment of this strategy would likely be prohibitively expensive.

Keywords