Jambura Journal of Mathematics (Aug 2024)

Perbandingan Value at Risk dan Expected Shortfall pada Portofolio Optimal menggunakan Metode Downside Deviation

  • Indah Nugrahaeni,
  • Hendra Perdana,
  • Neva Satyahadewi

DOI
https://doi.org/10.37905/jjom.v6i2.24326
Journal volume & issue
Vol. 6, no. 2
pp. 176 – 181

Abstract

Read online

Portfolio formation is one of the strategies that investors can do to get the best results Portfolio formation can use the Downside Deviation method. The optimal portfolio with this method uses downside deviation and sets the return below the benchmark as a measure of risk. Every optimal portfolio certainly cannot be separated from risk. To measure risk, you can use the Value at Risk (VaR) and Expected Shortfall values. This study aims to form an optimal portfolio using the Downside Deviation method and continued by comparing the possible losses that occur from the formed portfolio using the VaR and Expected Shortfall values. The data used in this study is the daily closing price data of LQ-45 Index stocks in the banking sector in the period February-June 2023. From the stock data, data selection is carried out by selecting stocks that have a positive expected return and are normally distributed. Then, the optimal portfolio formation stage is continued using the Downside Deviation method and comparing the possible risks formed with the VaR and Expected Shortfall values. The results of this study show that the optimal portfolio with the Downside Deviation method consists of four stocks, namely with the stock codes BRIS.JK, BBRI.JK, BBNI.JK, and BBCA.JK. This study uses a case example by investing capital of Rp100,000,000 with a one-day time period and three levels of confidence, namely 90%, 95%, and 99%. Based on the comparison of the risk value of the portfolio formed using VaR and Expected Shortfall, it is shown that the possible risk with the Expected Shortfall method is greater than the VaR value. Therefore, Expected Shortfall is better in estimating the maximum risk.

Keywords