Biomedicine & Pharmacotherapy (Aug 2024)

Salidroside improves cognitive function in Parkinson’s disease via Braf-mediated mitogen‑activated protein kinase signaling pathway

  • Shujin Lu,
  • Niu Ji,
  • Wei Wang,
  • Xiaoqian Lin,
  • Dianshuai Gao,
  • Deqin Geng

Journal volume & issue
Vol. 177
p. 116968

Abstract

Read online

Objective: To delve into the underlying mechanism of Salidroside (Sal) on the improvement of cognitive function in Parkinson’s Disease (PD). Methods: The experimental mice were divided into Control group, Model group [injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)], and Model+Sal (low concentration, high concentration) group. Mouse hippocampal tissues were extracted for RNA sequencing to obtain the core pathway and core gene. Mouse plasma was prepared and analyzed by LC-MS to obtain differential metabolites. In vitro experiments were verified by immunofluorescence and lentiviral transduction. Results: ELISA signaled that Sal facilitated the reduction of neuronal damage and inflammatory reaction in mice. MPTP_Sal_Low and MPTP_Sal_High groups had high levels of glial cell derived neurotrophie factor (GDNF) expression. Differentially expressed genes (DEGs) in control group, MPTP group and MPTP_Sal_High group were identified by transcriptomic, which were classified to the mitogen-activated protein kinase (MAPK) signaling pathway, and the core gene Braf was obtained. Metabolomics manifested that the differential metabolites involved DL-tyrosine, adenosine, phosphoenolpyruvate, and L-tryptophan. In vitro experiments verified that Sal treatment inhibited the up-regulation of p-p38, p-c-Jun N-terminal kinase (JNK), and p-extracellular signal-regulated kinase (ERK) expression, and growth of neuronal protrusions. The OE-Braf group showed a significant up-regulation of the GDNF expression, a decrease in the expression of p-p38, p-JNK, and p-ERK, and a significant growth of neuronal protrusions. Conclusion: Sal may exert its effects in PD through the Braf-mediated MAPK signaling pathway, which can increase GDNF expression and promote neuronal protrusion growth for the protection of neurological function and the improvement of cognitive function.

Keywords