AIP Advances (Jun 2017)

Engineered core-shell nanofibers for electron transport study in dye-sensitized solar cells

  • Y. Shabdan,
  • A. Ronasi,
  • P. Coulibaly,
  • M. Moniruddin,
  • N. Nuraje

DOI
https://doi.org/10.1063/1.4983181
Journal volume & issue
Vol. 7, no. 6
pp. 065008 – 065008-7

Abstract

Read online

In this study, a unique approach was developed to synthesize 1-D core-shell nanofibers of carbon nanotubes (CNTs) and TiO2 using combination of coaxial electrospinning and sol-gel technique. Diameters of the fabricated core-shell single wall carbon nanotube-TiO2 (SWCNT-TiO2) and multi wall carbon nanotube-TiO2 (MWCNT-TiO2) nano-composite fibers were between 50-100nm. Energy dispersive spectroscopy (EDS) and X-ray photon spectroscopy (XPS) were applied to confirm encapsulation of carbon nanotube (CNT) in the core-shell structure. Electron transport properties of both SWCNT-TiO2 and MWCNT-TiO2 in the Dye-sensitized solar cells (DSSCs) were studied for the first time. It was found that SWCNT-TiO2 based DSSC provided higher short circuit current relative to MWCNT-TiO2, which was explained by I-V and bode plots. These findings were further illustrated by semi-conductive properties of SWCNT.