Journal of Marine Science and Engineering (Nov 2022)

Depth and Heading Control of a Manta Robot Based on S-Plane Control

  • Yue He,
  • Yu Xie,
  • Guang Pan,
  • Yonghui Cao,
  • Qiaogao Huang,
  • Shumin Ma,
  • Daili Zhang,
  • Yong Cao

DOI
https://doi.org/10.3390/jmse10111698
Journal volume & issue
Vol. 10, no. 11
p. 1698

Abstract

Read online

Bionic underwater robots have many advantages such as high mobility, high efficiency, high affinity, etc. They are especially suitable for tasks such as collecting hydrographic information and for detailed surveys of the marine environment. These tasks are based on their high-precision attitude control. Therefore, this paper proposes a control scheme for a bionic underwater robot—a manta robot. To improve the depth retention capability of the manta robot, a S-plane controller based on asymmetric output was designed in combination with the longitudinal motion characteristics of the manta robot. In addition, to achieve good motion control for the manta robot under conditions of large changes in the heading angle, the fuzzy controller and the heading transition target value function were combined to design the heading controller of the manta robot. Finally, the feasibility and reliability of the control system of the manta robot were verified by pool experiments. The experimental results showed that the depth control error was within ±5 cm and the heading control error was within ±5 degrees. The control scheme proposed in this paper achieves high-precision attitude control of the manta robot, providing a basis for the practical application of the manta robot.

Keywords