BMC Surgery (Nov 2022)
Posterior atlantoaxial internal fixation using Harms technique assisted by 3D-based navigation robot for treatment of atlantoaxial instability
Abstract
Abstract Background To evaluate the accuracy of screw placement using the TiRobot surgical robot in the Harms procedure and to assess the clinical outcomes of this technique. Methods This retrospective study included 21 patients with atlantoaxial instability treated by posterior atlantoaxial internal fixation (Harms procedure) using the TiRobot surgical robot between March 2016 and June 2021. The precision of screw placement, perioperative parameters and clinical outcomes were recorded. Screw placement was assessed based on intraoperative guiding pin accuracy measurements on intraoperative C-arm cone-beam computed tomography (CT) images using overlay technology and the incidence of screw encroachment identified on CT images. Results Among the 21 patients, the mean age was 44.8 years, and the causes of atlantoaxial instability were os odontoideum (n = 11), rheumatoid arthritis (n = 2), unknown pathogenesis (n = 3), and type II odontoid fracture (n = 5). A total of 82 screws were inserted with robotic assistance. From intraoperative guiding pin accuracy measurements, the average translational and angular deviations were 1.52 ± 0.35 mm (range 1.14–2.25 mm) and 2.25° ± 0.45° (range 1.73°–3.20º), respectively. Screw placement was graded as A for 80.5% of screws, B for 15.9%, and C for 3.7%. No complications related to screw misplacement were observed. After the 1-year follow-up, all patients with a neurological deficit experienced neurological improvement based on Nurick Myelopathy Scale scores, and all patients with preoperative neck pain reported improvement based on Visual Analog Scale scores. Conclusions Posterior atlantoaxial internal fixation using the Harms technique assisted by a 3D-based navigation robot is safe, accurate, and effective for treating atlantoaxial instability.
Keywords