Environmental Research Communications (Jan 2024)

A scalable system to measure contrail formation on a per-flight basis

  • Scott Geraedts,
  • Erica Brand,
  • Thomas R Dean,
  • Sebastian Eastham,
  • Carl Elkin,
  • Zebediah Engberg,
  • Ulrike Hager,
  • Ian Langmore,
  • Kevin McCloskey,
  • Joe Yue-Hei Ng,
  • John C Platt,
  • Tharun Sankar,
  • Aaron Sarna,
  • Marc Shapiro,
  • Nita Goyal

DOI
https://doi.org/10.1088/2515-7620/ad11ab
Journal volume & issue
Vol. 6, no. 1
p. 015008

Abstract

Read online

Persistent contrails make up a large fraction of aviation's contribution to global warming. We describe a scalable, automated detection and matching (ADM) system to determine from satellite data whether a flight has made a persistent contrail. The ADM system compares flight segments to contrails detected by a computer vision algorithm running on images from the GOES-16 Advanced Baseline Imager. We develop a flight matching algorithm and use it to label each flight segment as a match or non-match. We perform this analysis on 1.6 million flight segments. The result is an analysis of which flights make persistent contrails several orders of magnitude larger than any previous work. We assess the agreement between our labels and available prediction models based on weather forecasts. Shifting air traffic to avoid regions of contrail formation has been proposed as a possible mitigation with the potential for very low cost/ton-CO2e. Our findings suggest that imperfections in these prediction models increase this cost/ton by about an order of magnitude. Contrail avoidance is a cost-effective climate change mitigation even with this factor taken into account, but our results quantify the need for more accurate contrail prediction methods and establish a benchmark for future development.

Keywords