BMC Medical Imaging (Jan 2023)

Diastolic dysfunction assessed by cardiac magnetic resonance imaging tissue tracking on normal-thickness wall segments in hypertrophic cardiomyopathy

  • Jinhan Qiao,
  • Peijun Zhao,
  • Jianyao Lu,
  • Lu Huang,
  • Xiaoling Ma,
  • Xiaoyue Zhou,
  • Liming Xia

DOI
https://doi.org/10.1186/s12880-022-00955-7
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Objectives Myocardial strain is reported to be a sensitive indicator of myocardial mechanical changes in patients with hypertrophic cardiomyopathy (HCM). The changes in the mechanics of the myocardium of normal wall thickness (< 12 mm) have yet to be well studied. This study aimed to evaluate the function of myocardial segments of normal thickness in patients with HCM. Methods Sixty-three patients with HCM and 30 controls were retrospectively enrolled in this retrospective study. Cine imaging, native and post-contrast T1 maps, T2 maps, and late gadolinium enhancement were performed. In addition, regional myocardial strain was assessed by cardiac magnetic resonance-tissue tracking. Strain parameters were compared between the controls and HCM patients with segments of the myocardium of normal thickness. Subgroup analysis was conducted in obstructive and non-obstructive HCM. Lastly, p < 0.05 was considered statistically significant. Results In normal-thickness myocardial segments of HCM (n = 716), diastolic peak strain rates (PSRs) were significantly lower than in the control group (n = 480) (radial, − 2.43 [− 3.36, − 1.78] vs. − 2.67 [− 3.58, − 1.96], p = 0.002; circumferential, 1.28 [1.01,1.60] vs. 1.39 [1.14, 1.78], p < 0.001; and longitudinal, 1.16 [0.75,1.51] vs. 1.28 [0.90, 1.71], p < 0.001). The normal-thickness segments showed no significant difference in systolic PSRs between HCM and the controls. In the subgroup analysis, significantly decreased diastolic PSRs were noted in both obstructive and non-obstructive HCM, compared with the controls (p < 0.05). Conclusions Diastolic changes in myocardial mechanics were observed in normal-thickness segments of HCM, occurring before morphological remodeling and systolic dysfunction developed. This finding contributed to a better understanding of the mechanical pathophysiology of HCM with preserved left ventricular ejection fraction. It may potentially aid in predicting disease progression and risk stratification.

Keywords