Electrochemistry Communications (Aug 2024)

Evaluation of in-plane architecture in a thermo-electrochemical cell with nanostructured and porous Sb:SnO2 electrodes

  • S. Castro-Ruiz,
  • J. García-Cañadas

Journal volume & issue
Vol. 165
p. 107750

Abstract

Read online

Thermo-electrochemical cells (TECs) are able to convert heat into electricity. They are formed by two electrodes (typically Pt) separated by a redox electrolyte (usually 0.4 M aqueous ferro/ferricyanide). The widely adopted architecture of TECs consists of the two electrodes separated by an electrolyte channel. To our knowledge, no studies have been reported exploring a different architecture. Here, we evaluate an alternative configuration, which comprises a substrate with the two electrodes at its ends and with the electrolyte added on the top contacting both electrodes, forming a planar configuration. We explore first the use of the standard Pt electrodes deposited on top of a conductive glass substrate. Then, we replace the Pt by nanostructured and porous Sb-doped SnO2. The planar configurations are compared with their corresponding typical architectures using the common ferro/ferricyanide electrolyte. It was found that the planar TEC with Sb:SnO2 reached a temperature coefficient of 1.76 mV/K, higher than the value obtained in the standard configuration with Sb:SnO2 (1.21 mV/K), and also higher than the planar architecture with Pt electrodes, which showed the typical value for the ferro/ferricyanide electrolyte (1.45 mV/K). As a consequence of this significantly larger value, a 29.7 % higher maximum power output than the planar TEC with Pt was observed. Our study identifies for the first time interesting new features when a planar architecture is employed, opening the door to explore in more detail this alternative configuration in TECs.

Keywords