Cell Death Discovery (Sep 2024)
Blockade of CD73 potentiates radiotherapy antitumor immunity and abscopal effects via STING pathway
Abstract
Abstract Radiotherapy (RT) is a crucial treatment for colorectal cancer (CRC) patients, but it often fails to induce systemic antitumor immunity. CD73, an immunomodulatory factor, is upregulated after RT and associated with poor prognosis in CRC patients. This study aims to elucidate the mechanisms driving RT-induced CD73 upregulation in CRC and investigate how combining RT with CD73 blockade stimulates immune responses and induces abscopal effects. Findings revealed that RT-induced CD73 upregulation is mediated by the ataxia telangiectasia and Rad3-related (ATR) pathway and correlated with RT tolerance, as demonstrated through flow cytometry, immunofluorescence, and Western Blotting. Using flow cytometry and multicolor immunofluorescence, experiments demonstrated that in CRC subcutaneous tumor models, combination therapy reduces the infiltration of myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and regulatory T cells (Tregs) while increasing dendritic cells (DCs) and CD8 + T cells, resulting in superior antitumor responses. Additionally, results from flow cytometry, Western Blot, and RNA sequencing demonstrated that combination therapy enhances the antigen-presenting ability of DCs and activates tumor antigen-specific CD8 + T cells, improving their function and delaying their depletion. The activation of the cGAS-STING and IFN-I pathways is crucial for this effect. In summary, the integration of RT with CD73 blockade effectively reverses the immunosuppressive TME and invigorates CD8 + T cell-driven, specific antitumor immune responses. These insights shed fresh light on the mechanisms governing the synergistic modulation of immunity by RT and CD73 blockade in CRC, offering promising avenues for the advancement of therapeutic strategies against CRC.