Journal of Low Frequency Noise, Vibration and Active Control (Sep 2021)

Numerical and Experimental Investigation on Axial Rub Impact Dynamic Characteristics of Flexible Rotor Supported by Hybrid Gas Bearings

  • Long Hao,
  • Dongjiang Han,
  • Wei Zhao,
  • Qingjun Zhao,
  • Jinfu Yang

DOI
https://doi.org/10.1177/1461348420986645
Journal volume & issue
Vol. 40

Abstract

Read online

Gas bearings are widely used in micro- and small turbomachinery. Because of the pursuit of high efficiency, turbomachinery adopts small clearance of rotor and stator. The gas bearing rotor system easily suffers from rub impact due to the inherently low damping and load capacity of gas film. Axial rub impact may lead to catastrophic failure of gas bearing rotor system. Previous work put emphasis on radial rub, and only a few papers researched on the axial rub impact by simulation method. In this paper, dynamic responses of full annular axial rub are investigated numerically and experimentally. A single span flexible rotor test rig is established to support this research. Dynamic characteristics of full annular axial rub of this gas bearing rotor system are obtained with finite element language-APDL. Dynamic characteristics within full speed range are experimentally researched based on the test rig. The dynamic behaviors are analyzed by means of waterfall diagrams, frequency spectrums, orbit trails, and vibration amplitude waveforms. During speed up, half speed whirl and gas film oscillation occur in radial direction. During speed down, the full annular axial rub between rotor thrust disk and gas bearing occurs. When lightly axial rub impact happens, the vibration patterns in the radial direction change barely, and 0 Hz component appears in the axial direction. When serious full annular axial rub impact happens, 0 Hz component occurs in both radial and axial directions and rotor orbit shows transverse motion in radial direction. These forms of dynamic characteristics can be effectively used to diagnose the full annular axial rub impact.