Grasses (Sep 2024)

Exogenous Melatonin Alleviates Osmotic Stress by Enhancing Antioxidant Metabolism, Photosynthetic Maintenance, and Hormone Homeostasis in Forage Oat (<i>Avena sativa</i>) Seedlings

  • Jingbo Yu,
  • Xingyu Luo,
  • Qingping Zhou,
  • Zhou Li,
  • Shiyong Chen

DOI
https://doi.org/10.3390/grasses3030014
Journal volume & issue
Vol. 3, no. 3
pp. 190 – 204

Abstract

Read online

Melatonin (MT) is a multifunctional hormone that enhances crop resilience against various abiotic stresses. However, its regulatory mechanism of osmotic tolerance in forage oats (Avena sativa) plants under water-limited scenarios is still unclear. This study aimed to delineate the impact of MT pretreatment on the morphological, physiological, and biochemical functions of oat seedlings under osmotic stress. Our findings demonstrated that exogenous treatment of MT noticeably elevated leaf area while decreasing the root/shoot ratio of oat seedlings subjected to osmotic stress. Osmotic-induced 38.22% or 48.37% decrease in relative water content could be significantly alleviated by MT pretreatment on day 7 or day 14, respectively. MT treatment also significantly mitigated osmotic-induced decreases in photosynthetic parameters including net photosynthetic rate, stomatic conductance, and intercellular CO2 concentration as well as various chlorophyll fluorescence parameters, which could contribute to enhanced accumulations of free proline and soluble sugars in seedlings after being subjected to a prolonged duration of osmotic stress. Furthermore, MT markedly improved antioxidant enzyme activities including superoxide dismutase, ascorbate peroxidase, catalase, and peroxidase along with the accumulation of ascorbic acid contributing to a significant reduction in reactive oxygen species under osmotic stress. In addition, the MT application induced a 978.12%, 33.54%, or 30.59% increase in endogenous MT, indole acetic acid, or gibberellic acid content under osmotic stress but did not affect the accumulation of abscisic acid. These findings suggest that an optimal concentration of MT (100 μmol·L−1) could relieve osmotic stress via improvement in osmotic adjustment, the enzymatic antioxidant defense system, and endogenous hormonal balance, thereby contributing to enhanced photosynthetic functions and growth of oat seedlings under water-limited conditions.

Keywords