Acta Biochimica et Biophysica Sinica (Nov 2022)
USP14 regulates cell cycle progression through deubiquitinating CDK1 in breast cancer
Abstract
Abnormal proliferation and cell cycle perturbation are the main hallmarks of breast cancer. Cyclin-dependent kinase 1 (CDK1) is one of the key kinases for cell transition from the G2 phase to M phase during the cell cycle progression. However, little is known about the degradation mechanisms of CDK1. USP14 (ubiquitin-specific processing protease 14) is an important proteasome-associated deubiquitinase that is critical for proteome homeostasis and plays a crucial role in the initiation and development of cancer. In this study, we find that USP14 shows high expression in breast cancer cells and results in the abnormal proliferation of cancer cells. Furthermore, we examine cell cycle distribution by flow cytometry and find that inhibition of USP14 causes cell cycle arrest in G2/M phase. As CDK1 is the key kinase in G2/M phase, we detect the interaction between USP14 and CDK1 and the effect of USP14 on the deubiquitination of CDK1. The results reveal that USP14 interacts with CDK1 and stabilizes CDK1 by deubiquitinating K48-linked ubiquitination. In conclusion, our findings reveal an indispensable role of USP14 in regulating cell cycle progression by stabilizing CDK1 in breast cancer, suggesting that USP14 may be used as a potential therapeutic target in breast cancer therapy.
Keywords