npj Computational Materials (Nov 2024)
An automated computational framework to construct printability maps for additively manufactured metal alloys
Abstract
Abstract In metal additive manufacturing (AM), processing parameters can affect the probability of macroscopic defect formation (lack-of-fusion, keyholing, balling), which can, in turn, jeopardize the final product’s integrity. A printability map classifies regions in the processing space where an alloy can be printed with or without porosity defects. However, the creation of these printability maps is resource-intensive. Previous efforts to generate printability maps have required single-track experiments on pre-alloyed powder, limiting the utilization of these printability maps for the high-throughput design of printable alloys. We address these challenges in the case of Laser Powder Bed Fusion AM (L-PBF-AM) by introducing a fully computational, predictive approach to create printability maps for arbitrary alloys. Our framework uses physics-based thermal models and a variety of defect formation criteria. We benchmark the predictive ability of the proposed framework against literature data for the following commonly printed alloys: 316 Stainless Steel, Inconel 718, Ti-6Al-4V, AF96, and Ni-5Nb. Furthermore, we deploy the framework on NiTi-based Shape Memory Alloys (SMAs) as a case study. We scrutinize the accuracy of various sets of defect criteria and use these accuracy measurements to create an uncertainty-aware probabilistic framework capable of predicting the printability maps of arbitrary alloys. This framework has the potential to guide alloy designers to potentially easy-to-print alloys, enabling the co-design of high-performing printable alloys.