Electronic Journal of Differential Equations (Oct 2020)

Nonlinear degenerate elliptic equations in weighted Sobolev spaces

  • Aharrouch Benali,
  • Bennouna Jaouad

Journal volume & issue
Vol. 2020, no. 105,
pp. 1 – 15

Abstract

Read online

We study the existence of solutions for the nonlinear degenerated elliptic problem $$\displaylines{ -\operatorname{div} a(x,u,\nabla u)=f \quad\text{in } \Omega,\cr u=0 \quad\text{on }\partial\Omega, }$$ where $\Omega$ is a bounded open set in $\mathbb{R}^N$, $N\geq2$, a is a Caratheodory function having degenerate coercivity $a(x,u,\nabla u)\nabla u\geq \nu(x)b(|u|)|\nabla u|^p$, 1<p<N, $\nu(\cdot)$ is the weight function, b is continuous and $f\in L^r(\Omega)$.

Keywords