PLoS Neglected Tropical Diseases (Jan 2012)
Early clinical features of dengue virus infection in nicaraguan children: a longitudinal analysis.
Abstract
BACKGROUND: Tens of millions of dengue cases and approximately 500,000 life-threatening complications occur annually. New tools are needed to distinguish dengue from other febrile illnesses. In addition, the natural history of pediatric dengue early in illness in a community-based setting has not been well-defined. METHODS: Data from the multi-year, ongoing Pediatric Dengue Cohort Study of approximately 3,800 children aged 2-14 years in Managua, Nicaragua, were used to examine the frequency of clinical signs and symptoms by day of illness and to generate models for the association of signs and symptoms during the early phase of illness and over the entire course of illness with testing dengue-positive. Odds ratios (ORs) and 95% confidence intervals were calculated using generalized estimating equations (GEE) for repeated measures, adjusting for age and gender. RESULTS: One-fourth of children who tested dengue-positive did not meet the WHO case definition for suspected dengue. The frequency of signs and symptoms varied by day of illness, dengue status, and disease severity. Multivariable GEE models showed increased odds of testing dengue-positive associated with fever, headache, retro-orbital pain, myalgia, arthralgia, rash, petechiae, positive tourniquet test, vomiting, leukopenia, platelets ≤150,000 cells/mL, poor capillary refill, cold extremities and hypotension. Estimated ORs tended to be higher for signs and symptoms over the course of illness compared to the early phase of illness. CONCLUSIONS: Day-by-day analysis of clinical signs and symptoms together with longitudinal statistical analysis showed significant associations with testing dengue-positive and important differences during the early phase of illness compared to the entire course of illness. These findings stress the importance of considering day of illness when developing prediction algorithms for real-time clinical management.