Applied Sciences (Dec 2020)

Design and Modeling of a Parent Big STAR Robot Platform That Carries a Child RSTAR

  • Daniel Yacoby,
  • Liran Yehezkel,
  • Ori Inbar,
  • David Zarrouk

DOI
https://doi.org/10.3390/app10248767
Journal volume & issue
Vol. 10, no. 24
p. 8767

Abstract

Read online

In this paper we present a wheeled robot platform for child-parent robot collaboration. The new robot, named Big STAR (BSTAR), is fitted with a tail that can act as a ramp to carry and deploy a child RSTAR that can crawl between small cracks and underneath obstacles. Both robots possess sprawling capabilities inspired from insects, enabling them to transform their external geometry and dynamics to overcome a variety of obstacles. The BSTAR can travel at speeds of up to 1.4 m/s, carry payloads of more than five kilograms and travel over rough terrains. The collaboration between the two robots substantially increases their navigability and their capability to overcome obstacles. It increases their working distance and scouting area since the larger robot can act as a charging point for the smaller one. We first describe the design of the newly developed parent BSTAR robot and provide a kinematic and dynamic analysis that determines the force requirements of the robots when collaborating, followed by an evaluation of their mechanical and electrical requirements. We show that under multiple challenging scenarios the robot pair can successfully overcome a variety of obstacles.

Keywords