ISPRS International Journal of Geo-Information (Dec 2021)

Semantic Segmentation of High-Resolution Airborne Images with Dual-Stream DeepLabV3+

  • Ozgun Akcay,
  • Ahmet Cumhur Kinaci,
  • Emin Ozgur Avsar,
  • Umut Aydar

DOI
https://doi.org/10.3390/ijgi11010023
Journal volume & issue
Vol. 11, no. 1
p. 23

Abstract

Read online

In geospatial applications such as urban planning and land use management, automatic detection and classification of earth objects are essential and primary subjects. When the significant semantic segmentation algorithms are considered, DeepLabV3+ stands out as a state-of-the-art CNN. Although the DeepLabV3+ model is capable of extracting multi-scale contextual information, there is still a need for multi-stream architectural approaches and different training approaches of the model that can leverage multi-modal geographic datasets. In this study, a new end-to-end dual-stream architecture that considers geospatial imagery was developed based on the DeepLabV3+ architecture. As a result, the spectral datasets other than RGB provided increments in semantic segmentation accuracies when they were used as additional channels to height information. Furthermore, both the given data augmentation and Tversky loss function which is sensitive to imbalanced data accomplished better overall accuracies. Also, it has been shown that the new dual-stream architecture using Potsdam and Vaihingen datasets produced 88.87% and 87.39% overall semantic segmentation accuracies, respectively. Eventually, it was seen that enhancement of the traditional significant semantic segmentation networks has a great potential to provide higher model performances, whereas the contribution of geospatial data as the second stream to RGB to segmentation was explicitly shown.

Keywords