The Scientific World Journal (Jan 2013)

Intranuclear Crosstalk between Extracellular Regulated Kinase1/2 and Signal Transducer and Activator of Transcription 3 Regulates JEG-3 Choriocarcinoma Cell Invasion and Proliferation

  • Diana M. Morales-Prieto,
  • Stephanie Ospina-Prieto,
  • Wittaya Chaiwangyen,
  • Maja Weber,
  • Sebastian Hölters,
  • Ekkehard Schleussner,
  • Justine S. Fitzgerald,
  • Udo R. Markert

DOI
https://doi.org/10.1155/2013/259845
Journal volume & issue
Vol. 2013

Abstract

Read online

Invasiveness of trophoblast and choriocarcinoma cells is in part mediated via leukemia inhibitory factor- (LIF-) induced activation of signal transducer and activator of transcription 3 (STAT3). The regulation of STAT3 phosphorylation at its ser727 binding site, possible crosstalk with intracellular MAPK signaling, and their functional implications are the object of the present investigation. JEG-3 choriocarcinoma cells were cultured in presence/absence of LIF and the specific ERK1/2 inhibitor (U0126). Phosphorylation of signaling molecules (p-STAT3 (ser727 and tyr705) and p-ERK1/2 (thr 202/tyr 204)) was assessed per Western blot. Immunocytochemistry confirmed results, but also pinpointed the location of phosphorylated signaling molecules. STAT3 DNA-binding capacity was studied with a colorimetric ELISA-based assay. Cell viability and invasion capability were assessed by MTS and Matrigel assays. Our results demonstrate that LIF-induced phosphorylation of STAT3 (tyr705 and ser727) is significantly increased after blocking ERK1/2. STAT3 DNA-binding capacity and cell invasiveness are enhanced after LIF stimulation and ERK1/2 blockage. In contrast, proliferation is enhanced by LIF but reduced after ERK1/2 inhibition. The findings herein show that blocking ERK1/2 increases LIF-induced STAT3 phosphorylation and STAT3 DNA-binding capacity by an intranuclear crosstalk, which leads to enhanced invasiveness and reduced proliferation.