Remote Sensing (Dec 2021)
Efficient and Safe Robotic Autonomous Environment Exploration Using Integrated Frontier Detection and Multiple Path Evaluation
Abstract
Autonomous exploration and remote sensing using robots have gained increasing attention in recent years and aims to maximize information collection regarding the external world without human intervention. However, incomplete frontier detection, an inability to eliminate inefficient frontiers, and incomplete evaluation limit further improvements in autonomous exploration efficiency. This article provides a systematic solution for ground mobile robot exploration with high efficiency. Firstly, an integrated frontier detection and maintenance method is proposed, which incrementally discovers potential frontiers and achieves incremental maintenance of the safe and informative frontiers by updating the distance map locally. Secondly, we propose a novel multiple paths planning method to generate multiple paths from the robot position to the unexplored frontiers. Then, we use the proposed utility function to select the optimal path and improve its smoothness using an iterative optimization strategy. Ultimately, the model predictive control (MPC) method is applied to track the smooth path. Simulation experiments on typical environments demonstrate that compared with the benchmark methods, the proposed method reduce the path length by 27.07% and the exploration time by 27.09% on average. The real-world experimental results also reveal that our proposed method can achieve complete mapping with fewer repetitive paths.
Keywords