PLoS ONE (Jan 2021)

High-dose drug heat map analysis for drug safety and efficacy in multi-spheroid brain normal cells and GBM patient-derived cells.

  • Sang-Yun Lee,
  • Yvonne Teng,
  • Miseol Son,
  • Bosung Ku,
  • Ho Sang Moon,
  • Vinay Tergaonkar,
  • Pierce Kah-Hoe Chow,
  • Dong Woo Lee,
  • Do-Hyun Nam

DOI
https://doi.org/10.1371/journal.pone.0251998
Journal volume & issue
Vol. 16, no. 12
p. e0251998

Abstract

Read online

To test the safety and efficacy of drugs via a high does drug heat map, a multi-spheroids array chip was developed by adopting a micropillar and microwell structure. In the chip, patient-derived cells were encapsulated in alginate and grown to maturity for more than 7 days to form cancer multi-spheroids. Multi-spheroids grown in conventional well plates require many cells and are easily damaged as a result of multiple pipetting during maintenance culture or experimental procedures. To address these issues, we applied a micropillar and microwell structure to the multi-spheroids array. Patient-derived cells from patients with Glioblastoma (GBM), the most common and lethal form of central nervous system cancer, were used to validate the array chip performance. After forming multi-spheroids with a diameter greater than 100μm in a 12×36 pillar array chip (25mm × 75mm), we tested 70 drug compounds (6 replicates) using a high-dose to determine safety and efficacy for drug candidates. Comparing the drug response of multi-spheroids derived from normal cells and cancer cells, we found that four compounds (Dacomitinib, Cediranib, LY2835219, BGJ398) did not show toxicity to astrocyte cell and were efficacious to patient-derived GBM cells.