Stem Cell Research & Therapy (Jul 2021)

Mesenchymal stem cells alleviate idiopathic pneumonia syndrome by modulating T cell function through CCR2-CCL2 axis

  • Min Cao,
  • Huihui Liu,
  • Yujun Dong,
  • Wei Liu,
  • Zhengyu Yu,
  • Qingya Wang,
  • Qingyun Wang,
  • Zeying Liang,
  • Yuan Li,
  • Hanyun Ren

DOI
https://doi.org/10.1186/s13287-021-02459-7
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Idiopathic pneumonia syndrome (IPS) is a non-infectious fatal complication characterized by a massive infiltration of leukocytes in lungs and diffuse pulmonary injury after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Conventional immunosuppressive treatments for IPS have poor therapeutic effects. Safe and effective treatments are not yet available and under explorations. Our previous study demonstrated that mesenchymal stem cells (MSCs) can alleviate IPS, but the mechanisms remain unclear. Methods Co-cultured pre-activated T cells and MSCs in vitro to observe the changes in the CCR2-CCL2 axis. By establishing an IPS mouse model and administering MSCs to further verify the results of in vitro experiments. Results Co-culture of pre-activated T cells with MSCs in vitro modulated the CCR2-CCL2 axis, resulting in quiescent T cells and polarization toward CCR2+CD4+ T cell subsets. Blocking CCR2-CCL2 interaction abolished the immunoregulatory effect of MSCs, leading to re-activation of T cells and partial reversion of polarizing toward CCR2+CD4+ T cells. In IPS mouse model, application of MSCs prolonged the survival and reduced the pathological damage and T cell infiltration into lung tissue. Activation of CCR2-CCL2 axis and production of CCR2+CD4+ T cells were observed in the lungs treated with MSCs. The prophylactic effect of MSCs on IPS was significantly attenuated by the administration of CCR2 or CCL2 antagonist in MSC-treated mice. Conclusions We demonstrated an important role of CCR2-CCL2 axis in modulating T cell function which is one of the mechanisms of the prophylactic effect of MSCs on IPS.

Keywords