The Journal of Engineering (Sep 2024)

Design of adaptive speed controllers for matrix‐converter‐based interior permanent magnet synchronous motor drive systems

  • Tian‐Hua Liu,
  • Shao‐Ming Wang

DOI
https://doi.org/10.1049/tje2.12416
Journal volume & issue
Vol. 2024, no. 9
pp. n/a – n/a

Abstract

Read online

Abstract Interior permanent magnet synchronous motors (IPMSMs) which are driven by matrix converters have many advantages, including one‐stage power conversion, high efficiency, bidirectional power transfer, near unity input power factor, and low input current harmonics. However, the virtual DC‐link voltages of matrix‐converters vary from 0.866Vdc to Vdc and the current commutations of matrix‐converters create serious three‐phase stator harmonic currents as well. Moreover, matrix‐converter‐based IPMSM drive systems, in general, have very large external loads, which require advanced control methods. To solve these problems, two adaptive controllers, including a model reference adaptive controller and a self‐tuning controller, are investigated in this article for matrix‐converter PMSM drive systems. From the experimental results, the proposed two adaptive speed controllers provide excellent dynamic responses, which are superior to PI speed controllers, including faster transient responses, better tracking abilities, and greater robustness. As a result, this proposed matrix‐converter‐based IPMSM drive system is very suitable in industrial applications.

Keywords