IEEE Open Journal of Engineering in Medicine and Biology (Jan 2022)

Boosted-SpringDTW for Comprehensive Feature Extraction of PPG Signals

  • Jonathan Martinez,
  • Kaan Sel,
  • Bobak J. Mortazavi,
  • Roozbeh Jafari

DOI
https://doi.org/10.1109/OJEMB.2022.3174806
Journal volume & issue
Vol. 3
pp. 78 – 85

Abstract

Read online

Goal: To achieve high-quality comprehensive feature extraction from physiological signals that enables precise physiological parameter estimation despite evolving waveform morphologies. Methods: We propose Boosted-SpringDTW, a probabilistic framework that leverages dynamic time warping (DTW) and minimal domain-specific heuristics to simultaneously segment physiological signals and identify fiducial points that represent cardiac events. An automated dynamic template adapts to evolving waveform morphologies. We validate Boosted-SpringDTW performance with a benchmark PPG dataset whose morphologies include subject- and respiratory-induced variation. Results: Boosted-SpringDTW achieves precision, recall, and F1-scores over 0.96 for identifying fiducial points and mean absolute error values less than 11.41 milliseconds when estimating IBI. Conclusion: Boosted-SpringDTW improves F1-Scores compared to two baseline feature extraction algorithms by 35% on average for fiducial point identification and mean percent difference by 16% on average for IBI estimation. Significance: Precise hemodynamic parameter estimation with wearable devices enables continuous health monitoring throughout a patients’ daily life.

Keywords