Ecology and Evolution (Jul 2024)

High levels of species' extirpation in an urban environment—A case study from Berlin, Germany, covering 1700–2023

  • Silvia Keinath,
  • Shenya De Silva,
  • Nike Sommerwerk,
  • Jörg Freyhof

DOI
https://doi.org/10.1002/ece3.70018
Journal volume & issue
Vol. 14, no. 7
pp. n/a – n/a

Abstract

Read online

Abstract Species loss is highly scale‐dependent, following the species–area relationship. We analysed spatio‐temporal patterns of species' extirpation on a multitaxonomic level using Berlin, the capital city of Germany. Berlin is one of the largest cities in Europe and has experienced a strong urbanisation trend since the late nineteenth century. We expected species' extirpation to be exceptionally high due to the long history of urbanisation. Analysing 37 regional Red Lists of Threatened Plants, Animals and Fungi of Berlin (covering 9498 species), we found that 16% of species were extirpated, a rate 5.9 times higher than at the German scale and 47.1 times higher than at the European scale. Species' extirpation in Berlin is comparable to that of another German city with a similarly broad taxonomic coverage, but much higher than in regional areas with less human impact. The documentation of species' extirpation started in the eighteenth century and is well documented for the nineteenth and twentieth centuries. We found an average annual extirpation of 3.6 species in the nineteenth century, 9.6 species in the twentieth century and the same number of extirpated species as in the nineteenth century were documented in the twenty‐first century, despite the much shorter time period. Our results showed that species' extirpation is higher at small than on large spatial scales, and might be negatively influenced by urbanisation, with different effects on different taxonomic groups and habitats. Over time, we found that species' extirpation is highest during periods of high human alterations and is negatively affected by the number of people living in the city. But, there is still a lack of data to decouple the size of the area and the human impact of urbanisation. However, cities might be suitable systems for studying species' extirpation processes due to their small scale and human impact.

Keywords