Remote Sensing (Jun 2021)

Comparison and Assessment of Three ITRS Realizations

  • Jiao Liu,
  • Junping Chen,
  • Peizhao Liu,
  • Weijie Tan,
  • Danan Dong,
  • Weijing Qu

DOI
https://doi.org/10.3390/rs13122304
Journal volume & issue
Vol. 13, no. 12
p. 2304

Abstract

Read online

A terrestrial reference frame (TRF) is derived based on historical geodetic data and is normally updated every 5–6 years. The three most recent International Terrestrial Reference System (ITRS) realizations, ITRF2014, DTRF2014, and JTRF2014, were determined with different strategies, which has resulted in different signals in the reference frame parameters. In this paper, we used the continuous site position time series of International GNSS Service (IGS) from 1995 to 2020 as a benchmark to investigate the characteristics of the three frames. In the comparison, the ITRS realizations were divided into the determination and prediction sections, where the site coordinates of the TRFs were extrapolated in the prediction period. The results indicated that the orientation and scale parameters of the ITRF2014, and the IGS solutions showed excellent agreement during the determination period of ITRF2014, while, during the prediction period, the orientation parameter diverged from IGS with rates of 11.9, 5.5, and 8.4 μas/yr, and the scale degraded with a rate of −0.038 ppb/yr. The consistency of the origin parameters between the DTRF2014 and the IGS solutions during the two periods changed from 0.07, 0.11, and −0.15 mm/yr to −0.17, −0.18, and −0.12 mm/yr; the consistency of orientation parameters from −3.6, −1.9, and 2.9 μas/yr to 15.9, −2.3, and 13.2 μas/yr; and the consistency of scale from 0.007 to −0.005 ppb/yr. In the comparison between the JTRF2014 and IGS solutions, annual signals in the origin differences were 1.5, 3.0, and 2.4 mm in the X, Y, and Z components, respectively, and the temporal variation trends in different periods disagreed with their long-term trends. Obvious trend switches in the rotation parameters were also observable, and the complex temporal variation characteristics of the scale offsets may be related to the scale definition strategy applied in different TRFs.

Keywords