Physics and Imaging in Radiation Oncology (Oct 2021)

First clinical evaluation of breathing controlled four-dimensional computed tomography imaging

  • Juliane Szkitsak,
  • René Werner,
  • Susanne Fernolendt,
  • Annette Schwarz,
  • Oliver J. Ott,
  • Rainer Fietkau,
  • Christian Hofmann,
  • Christoph Bert

Journal volume & issue
Vol. 20
pp. 56 – 61

Abstract

Read online

Background and Purpose: Four-dimensional computed tomography (4DCT) has become an essential part of radiotherapy planning but is often affected by artifacts. A new breathing controlled 4DCT (i4DCT) algorithm has been introduced. This study aims to present the first clinical data and to evaluate the achieved image quality, projection data coverage and beam-on time. Material & Methods: The analysis included i4DCT data for 129 scans of patients with thoracic tumors. Projection data coverage and beam-on time were evaluated. Additionally, image quality was exemplarily discussed and rated by ten clinical experts with a 5-score-scale for 30 patients with large variations in their breathing pattern (‘challenging subgroup’). Rated images were reconstructed amplitude- and phase-based. Results: Expert scoring revealed that 78% (amplitude-based) and 63% (phase-based) of the challenging subgroup were artifact-free (rating ≥4). For the entire cohort, average beam-on time per couch position was 4.9 ± 1.6 s. For the challenging subgroup, time increased slightly but not significantly compared to the remaining patients (5.1 s vs. 4.9 s; p = 0.64). Median projection data coverage was 93% and 94% for inhalation and exhalation, respectively, for the entire cohort. The comparison for the subgroup and the remaining patients revealed a small but significant decrease of the median coverage values for the challenging cases (inhalation: 90% vs. 94%, p = 0.02; exhalation: 93% vs. 94%, p = 0.02). Conclusions: This first clinical evaluation of i4DCT shows very promising results in terms of image quality and projection data coverage. The results agree with and support the results of previous i4DCT phantom studies.

Keywords