Scientific Reports (Apr 2017)

Assembly of Ruminococcus flavefaciens cellulosome revealed by structures of two cohesin-dockerin complexes

  • Pedro Bule,
  • Victor D. Alves,
  • Vered Israeli-Ruimy,
  • Ana L. Carvalho,
  • Luís M. A. Ferreira,
  • Steven P. Smith,
  • Harry J. Gilbert,
  • Shabir Najmudin,
  • Edward A. Bayer,
  • Carlos M. G. A. Fontes

DOI
https://doi.org/10.1038/s41598-017-00919-w
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 14

Abstract

Read online

Abtract Cellulosomes are sophisticated multi-enzymatic nanomachines produced by anaerobes to effectively deconstruct plant structural carbohydrates. Cellulosome assembly involves the binding of enzyme-borne dockerins (Doc) to repeated cohesin (Coh) modules located in a non-catalytic scaffoldin. Docs appended to cellulosomal enzymes generally present two similar Coh-binding interfaces supporting a dual-binding mode, which may confer increased positional adjustment of the different complex components. Ruminococcus flavefaciens’ cellulosome is assembled from a repertoire of 223 Doc-containing proteins classified into 6 groups. Recent studies revealed that Docs of groups 3 and 6 are recruited to the cellulosome via a single-binding mode mechanism with an adaptor scaffoldin. To investigate the extent to which the single-binding mode contributes to the assembly of R. flavefaciens cellulosome, the structures of two group 1 Docs bound to Cohs of primary (ScaA) and adaptor (ScaB) scaffoldins were solved. The data revealed that group 1 Docs display a conserved mechanism of Coh recognition involving a single-binding mode. Therefore, in contrast to all cellulosomes described to date, the assembly of R. flavefaciens cellulosome involves single but not dual-binding mode Docs. Thus, this work reveals a novel mechanism of cellulosome assembly and challenges the ubiquitous implication of the dual-binding mode in the acquisition of cellulosome flexibility.