Data in Brief (Jun 2024)

Transcriptomic sequence dataset of a potential new model species for studying biomineralization Onchidoris muricata (Nudibranchia, Gastropoda, Mollusca)

  • Ekaterina D. Nikitenko,
  • Ilya E. Borisenko,
  • Andrey N. Anisenko,
  • Elena V. Vortsepneva

Journal volume & issue
Vol. 54
p. 110526

Abstract

Read online

Onchidoris muricata is a widespread shell-less species of nudibranch molluscs, which has unique for Gastropoda skeletal elements – subepidermal calcite spicules. The general and fine morphology of the spicules, as well as their maturation process in ontogenesis, have been studied in detail by authors. The uniqueness of spicules lies in their intracellular formation and location under the ectodermal epithelium, which is more typical for deuterostomes. We present O. muricata as a potentially new model species for studying calcification of intracellular protein structure. A total of 96 individuals were collected in the Kandalaksha Bay of the White Sea, both manually and by scuba diving. All individuals were divided into three groups based on morphological characteristics such as specimens’ size, spicule condition etc. This division suggests the existence of three stages in postembryonic ontogenesis of O. muricata reflecting the maturation of the spicule complex. Total RNA samples were isolated from three size groups of molluscs in three biological replicates. Libraries were prepared from the polyadenylated RNA fraction and sequenced at NovaSeq6000 (Illumina), yielding a total of 112.8 Gb of 150 bp paired-end reads, corresponding to almost 1,000-fold coverage of the transcriptome. Representative transcriptome assembled de novo with Trinity. In addition to obtaining the transcriptome sequences of O. muricata, differential expression analysis was also performed for these three size groups. This allows us to trace the dynamics of molecular and biological processes during the life of a mollusc. The obtained data can then be used as a reference transcriptome for closely related species, to study specific expressed genes, to identify various unique sequences, including protein-coding ones, to understand biological processes, including biomineralization and much more.

Keywords