Communications Engineering (Aug 2024)
Achieving precise multiparameter measurements with distributed optical fiber sensor using wavelength diversity and deep neural networks
Abstract
Abstract The development of advanced distributed optical fiber sensing systems that are capable of performing accurate and spatially resolved multiparameter measurements is of great interest to a wide range of scientific and industrial applications. Here, we propose and experimentally demonstrate a wavelength diversity based advanced distributed optical fiber sensor system to accomplish multiparameter sensing while greatly enhancing measurement accuracy. A suite of deep neural network (DNN) algorithms are developed and verified for data denoising, rapid Brillouin frequency shift estimation, and vibration data event classification. As a proof-of-concept, we demonstrate the effectiveness of the proposed advanced wavelength diversity distributed fiber sensor system assisted by DNN for simultaneous, independent measurements of static strain, temperature, and acoustic vibrations over a 25 km long sensing fiber at 3 m spatial resolution. These results suggest the potential for an intelligent multiparameter monitoring system with enhanced performance in advanced structural health monitoring applications.