Nature Communications (Aug 2024)
Spatially structured exchange of metabolites enhances bacterial survival and resilience in biofilms
Abstract
Abstract Biofilm formation enhances bacterial survival and antibiotic tolerance, but the underlying mechanisms are incompletely understood. Here, we show that biofilm growth is accompanied by a reduction in bacterial energy metabolism and membrane potential, together with metabolic exchanges between the inner and outer regions in biofilms. More specifically, nutrient-starved cells in the interior supply amino acids to cells in the periphery, while peripheral cells experience a decrease in membrane potential and provide fatty acids to interior cells. Fatty acids facilitate the repair of starvation-induced membrane damage in inner cells and enhance their survival in the presence of antibiotics. Thus, metabolic exchanges between inner and outer cells contribute to survival of the nutrient-starved inner cells and contribute to antibiotic tolerance within the biofilm.