Materials Research Express (Jan 2024)
Prediction of ductile cracking in the titanium alloy forging process
Abstract
The control of surface cracking in the forming of titanium alloy forgings is a significant problem in the forging industry. For titanium alloys, the formation of surface cracks is related to temperature, strain rate, and stress state. This study selected the widely used medium to high strength titanium alloy Ti-6Al-4V in the field of forging as the research material, and designed six different shapes of specimens for high-temperature tensile and compression tests. The mechanisms underlying crack formation were analyzed at the microscopic level, and the critical fracture displacement of these tests was extracted. Moreover, their critical fracture strains were obtained through simulations, and a High-temperature damage model was established based on the DF2016 model. The research results showed that cracks through void at grain boundaries propagate and aggregate to form, leading to a fracture mechanism characterized by ductile fracture through micro-pore aggregation. Simulation results demonstrate that the established model accurately predicts the crack of forgings.
Keywords